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SUMMARY

In this paper, a local stencil adaptive method is presented, which is designed for solving computational fluid
dynamics (CFD) problems with curved boundaries accurately. A local multiquadric-differential quadrature
(MQ-DQ) method is used to discretize the governing equations, taking advantage of its meshless nature.
The present method bears the properties of both local MQ-DQ method and local stencil adaptive method
and is thus named the local MQ-DQ-based stencil adaptive method. Two test problems with curved
boundaries are solved to investigate the performance of this solution-adaptive method. The numerical
results indicate that the proposed method is effective and efficient by combining the advantages of meshless
property for complex geometries and local adaptation for accuracy improvement. Copyright q 2007 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

It is well known that the accuracy and resolution of numerical results are strongly dependent
on the grid generated in the flow field. Therefore, how to generate a grid of high quality is of
paramount importance in the numerical simulation of fluid flow problems. For well-understood
physical problems, a non-uniform mesh can be designed to reflect the resolution requirement of
the given problems. For example, for the boundary layer problems, fine resolution is typically
required for regions near the wall boundaries. For more complicated problems, such as flows with
complicated domains or evolving interfacial flows, however, we do not know the properties of
their solutions beforehand or the changes of the solutions with time. Thus, we cannot generate
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an appropriate fixed grid a priori. For these problems, the so-called adaptive mesh refinement
(AMR) techniques are usually used to generate grids which can capture changes of the flow field
accurately.

Considerable attention has been devoted in the past few decades to the development of adaptive
refinement procedures and a large number of literature were published. There are two basic
approaches of grid adaptation: one is the so-called moving mesh methods and the other is the
mesh refinement methods. Moving mesh methods generally use a fixed number of mesh points,
and the points are continuously relocated as time evolves so that, at any instant in time, the spatial
density of the mesh points is proportional in some sense to the solution variation or the local
solution errors estimated. Several methods have been developed to determine mesh movement.
The moving finite-element method of Miller and Miller [1], for example, determines the mesh
movement by minimizing the residuals of the governing partial differential equations (PDEs). A
review of solution-adaptive methods of the moving grid approach has been reported by Eiseman
[2]. Further applications of the moving mesh methods can be found in [3–5]. Compared with
moving mesh methods, mesh refinement methods are more popular in solving practical problems.
In mesh refinement methods, the number of mesh points used is not fixed. During the computational
procedure, additional points will be inserted into regions where solutions are varying rapidly and
points are deleted from regions where solutions are less active. A lot of work has been done on the
development of local mesh refinement methods, see, for example, [6–9], with their applications
reported in [10–12].

Recently, Ding and Shu [9] proposed an efficient solution-adaptive procedure for two-
dimensional viscous incompressible flows. The key idea of their adaptive stencil algorithm is
to build up an adaptive hierarchy of symmetric 5-point stencils in the domain, so that central
differencing can be constructed at each interior node. The method combines the advantages of the
central difference method and an adaptive mesh method in a very smart way and is therefore very
effective and efficient in solving viscous incompressible flows. Despite its advantages, however,
the method as proposed cannot be used to solve problems with curved boundaries directly due to
the use of the central difference method. For problems with curved boundaries, before using the
adaptive method, we have to implement the so-called coordinate transformation technique to map
the physical domain into the computational domain. Furthermore, the original governing equations
in the physical domain should also be transformed to the forms in the computational domain. The
transformation procedure is usually trivial and the transformed governing equations can be very
complicated. In addition, further numerical errors will be brought into the discretization process.
Hence, the accuracy of the solutions will be degraded when compared with those obtained directly
in the physical domain. To avoid the above drawbacks, in this paper, we will develop a local
stencil adaptive method which can be directly applied to solve problems with curved boundaries
in the physical domain. How to effectively discretize the governing equations in complex physical
domains is the key point for this method. The so-called meshless methods seem to be a very
promising choice. The term meshless refers to the ability of the methods to construct functional
approximation or interpolation entirely from information at a set of scattered nodes, among which
there is no pre-specified connectivity or relationship. A number of meshless methods have been pro-
posed in the literature, such as the smoothed particle hydrodynamics method [13], the element-free
Galerkin method [14], the reproducing kernel particle method [15], the partition of unity method
[16], the hp-clouds method [17], and the meshless local Petrov–Galerkin method [18]. Recently,
the so-called local radial basis function-based differential quadrature (RBF-DQ) method has been
proposed by Shu et al. [19]. The method is a natural mesh-free approach. It can be regarded as a
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combination of the conventional DQ method with the RBFs by means of taking RBFs as the trial
functions in the DQ scheme. As a result, it combines the mesh-free nature of RBFs approximation
with the derivative approximation of DQ method. In the present paper, the local multiquadric-DQ
(MQ-DQ) method is chosen to discretize the governing equations, which is combined with the
stencil adaptive method for accurate solution for problems with curved boundaries.

2. DEVELOPMENT OF A LOCAL MQ-DQ-BASED STENCIL ADAPTIVE METHOD

In this section, we will present in detail the development of a local MQ-DQ-based stencil adaptive
method. To demonstrate the procedure clearly, we will describe the method in a step-by-step
manner.

2.1. Local MQ-DQ method

The details of the local MQ-DQ method can be found in [19]. Here, only a brief description is given
to illustrate the idea and formulation of the local MQ-DQ method. If a function f (x, y) is assumed
to be sufficiently smooth, its nth order derivative with respect to x , and mth order derivative with
respect to y, at a point (xi , yi ) can be approximated by the local MQ-DQ method as

f (n)
x (xi , yi ) =

N∑
k=1

w
(n)
i,k f (xik, yik) (1)

f (m)
y (xi , yi ) =

N∑
k=1

w
(m)
i,k f (xik, yik) (2)

where N represents the number of points used in derivative approximation. The subscript i is a
global index which refers to the reference point and k is a local index which stands for the kth
supporting point for point i (its global index can be written as ik). In our code, the Nth supporting
point for point i is the reference point itself. w(n)

i,k , w
(m)
i,k are the related weighting coefficients in the

x and y directions, which need to be determined. In the local MQ-DQ method, the determination
of weighting coefficients is based on the analysis of a local MQ approximation in a linear vector
space.

In the local MQ-DQ method, at any given reference point (xi , yi ), there is a supporting region,
in which there are N points randomly distributed. The function in this region can be locally
approximated by MQ-RBFs as

f (x, y)=
N−1∑
j=1

� j g j (x, y) + �N (3)

where

g j (x, y)=
√

(x − x j )2 + (y − y j )2 + c2 −
√

(x − xN )2 + (y − yN )2 + c2 (4)

c is a shape parameter given by the user. The subscript j is a local index which refers to the jth
supporting point for the reference point (xi , yi ) and the subscript N stands for the reference point
itself.
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It is easy to see that f (x, y) in Equation (3) constitutes an N-dimensional linear vector space
VN with respect to the operation of addition and multiplication. From the concept of linear
independence, the bases of a vector space can be considered as linearly independent subset that
spans the entire space. In the space VN , one set of base vectors is gN (x, y) = 1 and g j (x, y),
j = 1, . . . , N − 1, given by Equation (4).
From the property of a linear vector space, if all the base functions satisfy the linear equation (1)

or (2), so does any function in the space VN represented by Equation (3). There is an interesting
feature. From Equation (3), when all the base functions are given, the function f (x, y) is still
unknown since the coefficients �i are unknown. However, when all the base functions satisfy
Equation (1) or (2), we can guarantee that f (x, y) also satisfies Equation (1) or (2). In other
words, we can guarantee that the solution of a PDE which can be represented by Equation (3)
satisfies Equation (1) or (2). Thus when the weighting coefficients of DQ approximation are
determined by all the base functions, they can be used to discretize the derivatives in a PDE. This
is the essence of the local MQ-DQ method.

Substituting all the base functions into Equations (1) and (2), we can obtain a set of linear
equations, which can be expressed in the matrix form as

[D] = [G][W ] (5)

where

[D] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�ng1(xi , yi )
�xn

�mg1(xi , yi )
�ym

...
...

�ngN−1(xi , yi )

�xn
�mgN−1(xi , yi )

�ym

0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[G] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

g1(x1, y1) g1(x2, y2) · · · g1(xN , yN )

...
... · · · ...

gN−1(x1, y1) gN−1(x2, y2)
. . . gN−1(xN , yN )

1 1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

[W ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w
(n)
i1 w

(m)
i1

w
(n)
i2 w

(m)
i2

...
...

w
(n)
i N w

(m)
i N

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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For matrix [D], we can successively differentiate Equation (4) to get its elements. For example,
the first-order derivative of g j (x, y) with respect to x can be written as

�g j (x, y)

�x
= x − x j√

(x − x j )2 + (y − y j )2 + c2
− x − xN√

(x − xN )2 + (y − yN )2 + c2
(6)

With the known matrices [D] and [G], the weighting coefficient matrix [W ] can be obtained by
using a direct method such as LU decomposition.

In the local MQ-DQ method, the shape parameter c has a strong influence on the accuracy
of numerical results. The optimal value of c is affected by the number of supporting points and
the size of supporting region. Usually, the number of supporting points is fixed for an appli-
cation. The effect of supporting region on c can be removed by normalizing the scale of the
supporting domain. The essence of this idea is to transform the local support region to a unit
square for the two-dimensional case. The normalization can be carried out by the following
transformation:

x = x

Di
, y = y

Di
(7)

where (x, y) represents the coordinates of supporting region in the physical space, (x, y) denotes
the coordinates in the unit square, Di is the side length of the minimal square enclosing all nodes
in the supporting region for the point i. The corresponding MQ basis functions in the local support
now become

�=
√(

x − xi
Di

)2

+
(
y − yi

Di

)2

+ c2, i = 1, . . . , N (8)

Compared with the traditional MQ-RBF method, we can find that the shape parameter c is actually
equivalent to cDi . The coordinate transformation (7) also changes the formulation of the weighting
coefficients in the local MQ-DQ approximation. For example, by using the differential chain rule,
the first-order partial derivative with respect to x can be written as

� f

�x
= � f

�x
dx

dx
= 1

Di

� f

�x
= 1

Di

N∑
j=1

w
(1)
i, j fi j =

N∑
j=1

w
(1)
i, j

Di
fi j (9)

where w
(1)
i, j are the weighting coefficients computed in the unit square, w

(1)
i, j /Di are the actual

weighting coefficients in the physical domain. Clearly, when Di is changed, the equivalent c in
the physical space is automatically changed. The choice of constant c can be referred to the work
of Shu et al. [19], which shows an efficient way to select c. For the present work, nine local nodes
are used in MQ-DQ discretization. It was found that for this case, the shape parameter c can be
chosen in a wide range to get a converged solution, in which the accuracy of numerical solution
does not change much. This means that the results are not very sensitive to c. In our numerical
examples, c is taken as 4.
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Stencil type A Stencil type B

Figure 1. Configuration of two types of stencils.
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Figure 2. Configuration of an initial stencil.

2.2. Finite difference-based stencil adaptive algorithm

The details of the finite difference-based stencil adaptive algorithm can be found in [9]. This
algorithm is based on the local stencil refinement and coarsening. For any interior point in the
domain, there is a local stencil associated with it. In general, there are two types of stencils
encountered in this adaptive algorithm, as shown in Figure 1. For the convenience of inserting
and deleting nodes from the adaptive stencils, only one index is used to identify the node in the
domain, i.e. a global nodal index. For an arbitrary reference node i, its stencil can be symbolized as
imn and the position of the nodes in the stencil are denoted by Xm

n , where the superscript m denotes
the resolution level, and the subscript n = 0, 1, . . . , 4 denotes the local index of the member nodes
in the stencil.

The stencil adaptation procedure is shown below. Initially, it is easy to construct the stencil of
‘A’ configuration around an arbitrary interior node i , as shown in Figure 2. For the convenience of
illustration, we will take node i and its attached stencil as an example to demonstrate the whole
procedure.
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2.2.1. Criteria for stencil refinement/coarsening. First, we have to determine whether the stencil
should be refined or coarsened. In this procedure, an action indicator is adopted to monitor the
variation of the parameter of interest and send the commands to perform the corresponding process.
Ding and Shu [9] proposed two monitor parameters to measure the local variation of the solution.
They are defined as follows:

1. Absolute difference, which is defined by �1 = max(ui ) − min(ui ).
2. Relative difference, which is defined by �2 =max(ui ) − min(ui )/max |ui | where u is the

parameter of interest, and the subscript i = 0, 1, . . . , 4 denotes the local index of nodes in
one stencil.

The action indicator is constructed by two thresholds. One is the upper bound �max and the
other is the lower bound �min. If �min<�<�max, the magnitude of local variation with respect
to the parameter of interest is in the range given a priori and no adaptation procedure will be
implemented on the stencil. Otherwise, if �>�max, the local variation of the parameter is relatively
large and the stencil needs to be refined to improve the accuracy. Similarly, if �<�min, the local
variation of the parameter is relatively small and the stencil needs to be coarsened to improve
the efficiency. To simplify the adaptation procedure, some constraints are introduced and checked
before the process of stencil refinement/coarsening, which can be found in [9]. From the above,
whether the stencil should be refined or coarsened has been determined. In the following, we will
show the stencil refinement and coarsening algorithms.

2.2.2. Stencil refinement algorithm. If stencil refinement at node i is determined by the local
resolution requirement, the stencil resolution level of node i needs to be advanced from level 0
(i0n) to level 1 (i1n). Stencil refinement is achieved by the injection of extra grid points in the old
stencil region to form a new stencil. In this case four new nodes are inserted. The positions of the
four newly generated nodes are actually the midpoints of the stencil edges, as shown in Figure 3.
More specifically, they yield

X1
1 = X0

1 + X0
4

2
, X1

2 = X0
4 + X0

3

2
, X1

3 = X0
3 + X0

2

2
and X1

4 = X0
2 + X0

1

2
(10)

i0
1i

0
2i

0
3i

0
4i

1
1i

1
2i

1
3i

1
4i

Figure 3. Stencil refinement from resolution level 0 to 1.
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i0
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Level 0 grid point
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Level 1 grid point

2
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2
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2
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2
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Level 2 grid point

Figure 4. Stencil refinement from resolution level 1 to 2.

It can be clearly seen that after the refinement, the reference node remains at the centre of the
stencil. Furthermore, the stencil for node i naturally evolves from the ‘A’ configuration of i0n into
‘B’ configuration of i1n . It is very interesting to observe the stencils for the newly added nodes.
Take the member node i11 of node i as an example. From Figure 3, we can see that the stencil for
node i11 falls into type ‘B’ category, and it also has the same stencil size as the refined stencil of
the node i at resolution level 1. In other words, node i11 generated during the level 1 adaptation
also possesses the stencil of that resolution level. This is also the case for the other newly inserted
points.

If further stencil refinement at node i is required, the stencil resolution level of node i needs to
be advanced from level 1 (i1n) to level 2 (i2n). As a consequence, four more nodes are inserted in
the domain. The positions of the four nodes are also the midpoints of the stencil edges, as shown
in Figure 4. More specifically, they yield

X2
1 = X1

1 + X1
4

2
, X2

2 = X1
4 + X1

3

2
, X2

3 = X1
3 + X1

2

2
and X2

4 = X1
2 + X1

1

2
(11)

It can be clearly seen from Figure 4 that the stencil of level 2 has the ‘A’ configuration. We also
observe that the newly added nodes also possess level 2 stencils.

If we follow the same procedure and carry on the adaptation, we can find that the stencil of the
even resolution levels has the ‘A’ configuration while the stencil of the odd resolution levels has
the ‘B’ configuration. As the adaptation continues, the two types of stencil appear alternatively. It
should be pointed out that during the stencil refinement, only the stencils of the reference node
and its stencil points are affected or changed. The stencils of other nodes in the domain remain
the same.

2.2.3. Local stencil coarsening. If a node stencil is required to be coarsened, its stencil will
be recovered to the configuration of a stencil at a coarser level. As compared with the stencil
refinement, the process of stencil coarsening is much easier since the adaptation information at
every interior node has been recorded during previous stencil refinement. Note that the coarsening
procedure can only be carried out on resolution levels higher than the initial one, i.e. m>0.
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2.3. Local MQ-DQ-based stencil adaptive method

Although the finite difference-based stencil adaptive method is very effective and efficient in solving
problems with regular domains, it is not applicable to solve problems with curved boundaries.
Hence, the application of the method is severely limited. Here, we extend the capability of the
local stencil adaptive algorithm to solve problems with curved boundaries.

For problems with curved boundaries, the background mesh will normally be non-uniform.
Therefore, the initial stencils for the interior nodes will not be geometrically symmetric, as shown
in Figure 5. On the other hand, we can still use the stencil refinement process of [9] to effectively
refine the stencil for problems with curved boundaries. If stencil refinement at node i is required,
similar to the process in the finite difference-based stencil adaptive method, extra four nodes will
be injected to form a new stencil. Before injection of each of the four nodes, however, we will
first search the four member nodes of the stencil of that point. Fortunately, it is not difficult due
to our stencil design. Here, we will take the injection of i11 as an example to illustrate the process,
as shown in Figure 6. From Figure 6, we can see that three of the four member nodes of stencil
i11 can be immediately determined since they are actually among the old stencil i0n for node i . The
only exception is the member node (i11)

1
1. We note that it is also located in the stencil for nodes

i0
1i

0
2i

0
3i

0
4i

Figure 5. Configuration of an initial stencil in complex geometries.

ii =1
3

1
1)(0

1
1
4

1
1)( ii =

0
2i

0
3i

0
4

1
2

1
1)( ii =

1
1

1
1)(i

1
1i

Figure 6. Injection of grid point i11 .
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i0
1i

0
2i

0
3i

0
4i

1
1i 1

2i

1
3i

1
4i

Level 0 grid point Level 1 grid point

Figure 7. Stencil refinement from resolution level 0 to 1.

i 1i 2i 3i 4i 5i 6i 7i 8i

Figure 8. A one-dimensional array for storing supporting points.

i01 and i04 of resolution level 0. Therefore, it can be accessed by either (i01)
0
4 or (i04)

0
1. After finding

the four member nodes, the position of node i11 can be easily determined. It is reasonable to insert
the point to the midpoint of the four member nodes. More specifically, it yields

X1
1 = (X1

1)
1
1 + (X1

1)
1
2 + (X1

1)
1
3 + (X1

1)
1
4

4
(12)

Now the first grid point i11 has been inserted and its stencil has been determined. The same process
applies for the injection of other grid points. When all the four grid points are inserted, the new
stencil of resolution 1 for node i has been formed, as shown in Figure 7.

As mentioned above, when we solve problems in rectangular domain, the central difference
method can be used to approximate the spatial derivatives because each stencil is a 5-point
symmetric stencil. In complex geometries, however, stencils are not geometrically symmetric and
the central difference method cannot be directly used without sacrificing the accuracy. Thus, we
have to look for another way to approximate the derivatives. In this stencil adaptive algorithm,
for a reference node at which derivatives need to be approximated, what we have is only the
information about the positions of the member nodes of the stencil. Fortunately, we can use the
so-called meshless methods to approximate the derivatives with high accuracy and here the local
MQ-DQ method is chosen, which has been described above.

With only four supporting points, the local MQ-DQ method may not approximate derivatives
very accurately. To improve the accuracy of the method, more points should be used in derivative
approximation. In our work, the number of supporting points in derivative approximation is chosen
to be eight, for accuracy comparable or superior to the central difference scheme on a regular
Cartesian grid, based on our experience. We will show in detail how to efficiently search for the
eight supporting points. For the convenience of illustration, a one-dimensional array, which is
shown in Figure 8, is assigned to each point to store the eight supporting points used in the local
MQ-DQ approximation.
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Figure 9. Initial eight supporting points for point i .
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1
4i

0
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Figure 10. Eight supporting points for point i in resolution level 1.

In the array, the first four supporting points, from i1 to i4, are the member points of the stencil
for reference point i . Comparatively, the search of the other four supporting points, from i5 to i8, is
not so easy. Now, we will show our method of searching supporting points through the refinement
procedure of an initial grid point i with the help of Figure 7.

Initially, it is convenient for us to search eight supporting points for point i , as shown in Figure 9.
When the refinement procedure is implemented on point i , the stencil of this point will be advanced
from resolution level 0 to resolution level 1 and four new points will be generated, i.e. from i11 to
i14 . Consequently, the eight supporting points for point i will be those shown in Figure 10. That is,
the four member points of the stencil at resolution level 1 will be used as the first four supporting
points and the four member points of the stencil at resolution level 0 will be chosen as the last
four supporting points for derivative approximation.

As for the newly generated points, we will take point i11 as an example to illustrate the way of
searching its eight supporting points. For this point, the first four supporting points will also be
the member points of its attached stencil and they are (i04)

0
1, i

0
4 , i

1
0 and i01 , respectively. For each of

the four member points of the stencil for point i11 , there is a local stencil associated with it. The
last four supporting points for i11 can be chosen from the member points of these four stencils.
When refinement procedure is implemented on point i11 , the member points of the new stencil
will become the first four supporting points and the member points of the old stencil will become
the last four supporting points for derivative approximation. As the adaptation continues, the way
of searching supporting points will be carried out in the same manner for the refined resolution
levels.

3. NUMERICAL EXPERIMENTS

In this section, two examples are presented to examine the performance of the local MQ-DQ-
based stencil adaptive method presented in the paper. In the first test case, we investigate the
accuracy of numerical solution using the method against an analytical solution for a boundary
value problem governed by the Poisson equation. For the second case, we numerically simulate a
natural convective heat transfer problem in a concentric annulus between a square outer cylinder
and a circular inner cylinder.

3.1. Comparison with analytical solution of the Poisson equation

To illustrate the capability of the method for problems with curved boundaries, we take the
computational domain to be an annulus between an inner airfoil and an outer circular cylinder.
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Figure 11. Domain around an airfoil and its background mesh.

The airfoil is chosen to be a modified NACA series airfoil with its profile given by

y(x)= ± 5bt[0.2969√xintx − 0.126xintx − 0.3516(xintx)
2 + 0.2843(xintx)

3 − 0.1015(xintx)
4]

where xint = 1.0089. The ‘+’ sign is used for the upper surface and the ‘−’ sign is used for the
lower surface of the airfoil. b is the chord of the airfoil and t represents the maximum thickness.
In our work, we set b= 1 and t = 0.12. The radius of the outer circular cylinder is chosen to be the
same as the chord of the airfoil, i.e. r = b. The computational domain and the background mesh
are shown in Figure 11.

We study the solution of the Poisson equation with Dirichlet boundary conditions on all bound-
aries:

�2T
�x2

+ �2T
�y2

= f (x, y) (13)

that is, TB(x, y) is given at the domain boundaries.
For our numerical experiments, we can easily devise an analytical solution T = sin(�x) sin(�y)

for the above problem with a source term

f (x, y)= −2�2 sin(�x) sin(�y) (14)

and a boundary condition satisfied by T = sin(�x) sin(�y) at the domain boundaries.
To generate a background mesh, we used a body-fitted grid generation technique. The background

grid is a 40× 10 mesh, as shown in Figure 11. After discretizing Equation (13) on all the interior
points by the local MQ-DQ method, we get a set of linear algebraic equations. To solve the
resultant equations, the Gauss–Seidel iterative method is used. In the iterative solution process,
the dependent variable T at the interior points is initially set to zero. The convergence criterion is
set to 10−10, which is considered to be small enough for a converged solution. When the solution
is converged, its accuracy is measured by the following L2 error norm:√

1

S

N∑
i=1

(|Ti,num − Ti,ana|2 dSi ) (15)

where Ti,num and Ti,ana are the numerical solution and analytical solution at point i , respectively.
dSi represents the area surrounding the point i and S is the total area of the domain. For this
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(a) (b)

(d)(c)

(e) (f)

Figure 12. Final node distributions with different highest resolution levels. (a) Levelmax = 0;
(b) Levelmax = 1; (c) Levelmax = 2; (d) Levelmax = 3; (e) Levelmax = 4; and (f) Levelmax = 5.

case, six levels of refinement have been used (from level 0 to level 5). The upper and lower bound
of the action indicator is set to 0.1 and 0.01. During the computation, the adaptation checking
procedure is activated for every 1500 iterations, to determine whether to insert or delete points.
After the solution is converged, the node distributions using different resolution levels are shown in
Figure 12, and the numerical performance of the stencil adaptive method is quantitatively studied
in Table I. It can be observed from Figure 12 that with increasing resolution level, more nodes
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Table I. Numerical results of the adaptive Poisson solver.

Maximum resolution level Grid points Error L2 Running time (s)

0 40× 10= 400 9.02× 10−3 0.6
1 744 4.33× 10−3 1.3
2 1428 1.44× 10−3 5.2
3 2650 1.09× 10−3 17.5
4 4817 6.89× 10−4 71.0
Fixed node method 160× 40= 6400 6.14× 10−4 177.0

Figure 13. Contour of the variable T versus the node distribution
with highest resolution level to 5, i.e. Levelmax = 5.

are added into the regions where high gradient of the solution is detected and that the node
distributions can clearly display the distribution of the solution gradients. At the same time, it can
be seen from Table I that increasing the resolution level also improves the accuracy of numerical
solution. The level 0 grid achieves a solution with error of 9.02× 10−3 while the level 4 grid
achieves a solution with error of 6.89× 10−4. As compared with the fixed grid method (the local
MQ-DQ method is also used) on a 160× 40 grid, our adaptive algorithm with four resolution
levels (4817 points totally) requires much less time to achieve a solution of similar accuracy. The
solution of Equation (13) is shown in Figure 13.

3.2. Natural convective heat transfer in a concentric annulus between a square outer cylinder
and a circular inner cylinder

Natural convective heat transfer in enclosures is of great importance due to its wide applications
in engineering. In this section, we will apply our developed local MQ-DQ-based stencil adaptive
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Figure 14. Sketch of physical domain of natural convection between
a square outer cylinder and a circular inner cylinder.

method to simulate the natural convective heat transfer in a concentric annulus between a square
outer cylinder and a circular inner cylinder.

3.2.1. Governing equations and boundary conditions. A schematic view of a horizontal concentric
annulus between a square outer cylinder and a heated circular inner cylinder is shown in Figure 14.
Heat is generated uniformly within the circular inner cylinder (constant heat source), which is
placed concentrically within the cold square cylinder (constant heat sink). If the cylinders are long
enough and the flow reaches its equilibrium state, it can be considered to be steady, laminar and
two dimensional. The buoyancy force is the driven force for the flow.

Based on the Boussinesq approximation, the non-dimensional governing equations for the prob-
lem are written in the vorticity-stream function formulation as

�2�
�x2

+ �2�
�y2

= � (16)

u
��

�x
+ v

��

�y
=Pr

(
�2�
�x2

+ �2�
�y2

)
− Pr Ra

�T
�x

(17)

u
�T
�x

+ v
�T
�y

= �2T
�x2

+ �2T
�y2

(18)

where � denotes the stream function, � represents the vorticity, and T is the non-dimensional
temperature. The Prandtl number is defined as Pr= �Cp/k, and the Rayleigh number is defined
as Ra=Cp�0g	L

3�T /k
. Here, � is the viscosity, Cp is the specific heat at constant pressure,
k is the thermal conductivity, �0 is the reference density, g is the gravitational acceleration, 	
is the thermal expansion coefficient, L is the side length of the square outer cylinder, �T is the
temperature difference between the inner and outer cylinders, and � is the kinematic viscosity.
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Velocity components u and v can be computed from the stream function � as

u = ��

�y
, v = −��

�x
(19)

Using the expressions in Equation (19), Equation (16) can also be written as

� = �u
�y

− �v

�x
(20)

The governing equations (16)–(19) are discretized by the local MQ-DQ method. The discretization
form of the governing equations at a general node i can be written as follows:

N∑
k=1

w
(2)
i,k �k

i +
N∑

k=1
w

(2)
i,k�

k
i = �i (21)

ui
N∑

k=1
w

(1)
i,k �k

i + vi
N∑

k=1
w

(1)
i,k�

k
i =Pr

(
N∑

k=1
w

(2)
i,k �k

i +
N∑

k=1
w

(2)
i,k�

k
i

)
− Pr Ra

N∑
k=1

w
(1)
i,k T

k
i (22)

ui
N∑

k=1
w

(1)
i,k T

k
i + vi

N∑
k=1

w
(1)
i,k T

k
i =

N∑
k=1

w
(2)
i,k T

k
i +

N∑
k=1

w
(2)
i,k T

k
i (23)

ui =
N∑

k=1
w

(1)
i,k�

k
i , vi = −

N∑
k=1

w
(1)
i,k �k

i (24)

where k is the kth supporting point of reference node i . As for the boundary conditions, the
non-slip conditions are imposed on the wall, and both cylinders are considered isothermal. From
the non-slip condition, the velocities u and v on both the inner and outer cylinder walls are zero.
Thus the boundary condition can be written as follows:

u|inner wall = u|outer wall = 0, v|inner wall = v|outer wall = 0 (25)

�|inner wall = 0, �|outer wall = 0 (26)

T |inner wall = 1, T |outer wall = 0 (27)

The boundary condition for vorticity � can be derived from Equation (20),

�|wall = �u
�y

∣∣∣∣
wall

− �v

�x

∣∣∣∣
wall

(28)

Like the governing equations, this boundary condition can also be discretized by the local MQ-DQ
method and the vorticity value on the boundary can be updated by the following equation:

�i =
N∑

k=1
w

(1)
i,k u

k
i −

N∑
k=1

w
(1)
i,k vki (29)
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3.2.2. Results and discussion.

3.2.2.1. Definition of Nusselt numbers. The local heat transfer coefficient h is expressed as

h =−k
�T
�n

(30)

where k is the thermal conductivity. The average heat transfer coefficient h can be computed as

h = 1

2�

∫ 2�

0
h d� (31)

The average Nusselt numbers for the inner and the outer boundaries are, respectively, determined by

Nui = hiSi
k

, Nuo = hoSo
k

(32)

where Si and So are defined in the same way as in the work of Moukalled and Acharya [20]. In
their work, the computational domain is taken as half of the physical domain due to symmetry, so
Si and So are taken as half of the circumferential lengths of the inner and outer cylinder surfaces,
respectively. As at steady state, the Nusselt numbers along the inner and outer walls are the same,
there is no need to pay separate attention to Nui and Nuo. Thus in this study, we only show the
value of Nui, which is also noted as Nu.

3.2.2.2. Validation of numerical results. In the present study, Rayleigh number is fixed at
105 in a steady laminar boundary-layer regime, and Prandtl number is set to be 0.71. For the
natural convection problem, the temperature T is considered as a very important flow parameter.
Therefore,the temperature is chosen as the parameter of interest in this case. The upper and lower
thresholds are set to 0.5 and 0.1, and the finest adaptive level is set to 3. During the computation,
the adaptation checking procedure is activated for every 1000 iterations, to determine whether to
insert or delete points. All the differential operators are discretized by the local MQ-DQ method
and the resultant algebraic equations are solved by the successive over-relaxation (SOR) iterative
method.

To the knowledge of the present authors, very few work has been done on the simulation of
natural convection in a concentric annulus between a square outer cylinder and a circular inner
cylinder. In the work of Moukalled and Acharya [20], three different aspect ratios and four different
Rayleigh numbers have been considered. Their numerical data were validated by comparison with
some experimental data and a good agreement was found. In the present study, the results of
Moukalled and Acharya [20] will be used to validate the present numerical results. The maximum
stream function value �max and the average Nusselt number Nu between the present work and
work of Moukalled and Acharya [20] are compared in Table II for an aspect ratio of 2.5. It should
be noted that due to different ways of non-dimensionalization between the work of Moukalled and
Acharya [20] and the present work, the equivalent �max in Table II is the one given from Moukalled
and Acharya [20] multiplying by the Prandtl number. From Table II, we can see that the results
with an initial grid of 80× 36 show significantly larger values for all the three parameters than
and Acharya [20]. However, when the points are refined to resolution level 1, those by Moukalled
the results agree much better with the reference results. It indicates that with the refinement of the
grid, the accuracy of the solutions has been improved. With regard to efficiency, we can compare
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Table II. Comparison of �max and Nu for aspect ratio= 2.5, Ra= 105, Pr= 0.71.

Different choices Number of points used �max �min Nu Time used (s)

80× 36 80× 36= 2880 8.481 −8.481 5.102 230
Level 1 4614 8.350 −8.351 5.016 464
160× 71 160× 71= 11 360 8.347 −8.347 5.016 4017
Moukalled’s N.A. 8.38 N.A. 5.080 N.A.

Background grid, 41121× Level 1

Level 2 Level 3

Figure 15. Final node distributions with different highest resolution levels.

the results of two cases. One is using the resolution level 1 grid whose initial grid is set to 80× 36
and the other is using the fixed grid 160× 71. From Table II, it can be seen that as compared with
the fixed grid method on a 160× 71 grid (11 360 grid points), our adaptive algorithm with one
resolution level (4614 grid points) requires much less grid points and running time to achieve a
solution of similar accuracy. The node distributions of using different resolution levels are shown
in Figure 15 for an aspect ratio of 2.6. The isotherms and streamlines are displayed in Figures 16
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Figure 16. Isotherms for Pr= 0.71, Ra= 105 and rr = 2.6.

Figure 17. Streamlines for Pr= 0.71, Ra= 105 and rr = 2.6.

and 17. Comparing Figures 15 and 16, we can see that with increasing resolution level, more and
more points are inserted into the regions near the inner circular cylinder and the regions near the
top boundary of the outer square cylinder, where the variation of temperature is relatively large.
A clear correlation between the refined regions in Figure 15 and the temperature gradients in
Figure 16 can be observed.
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4. CONCLUSIONS

In this paper, an efficient local stencil adaptive algorithm has been presented for two-dimensional
fluid flow problems with curved boundaries. This algorithm is able to automatically adjust the
local stencils to reflect the gradient of the solution. The local MQ-DQ method has been used
to discretize the governing equations because of its meshless nature. Two numerical experiments
have been carried out to examine the performance of this method. Numerical results show that this
method can effectively solve problems with curved boundaries. Furthermore, it can solve problems
as accurately as the local MQ-DQ method does on a regular grid, but with less grid points and
running time. As a result, this local MQ-DQ-based stencil adaptive method offers a promising
approach to solve engineering problems with curved boundaries.
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